Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Angela Puls, Christian Näther and Wolfgang Bensch*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany

Correspondence e-mail:
wbensch@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.024$
$w R$ factor $=0.056$
Data-to-parameter ratio $=25.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Ammoniopropylammonium dodeca- μ-sulfidotetrasulfidodecaantimony

In the structure of the title compound, $\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Sb}_{10} \mathrm{~S}_{16}\right]$, the SbS_{3} pyramids are interconnected to form a one-dimensional $\left[\mathrm{Sb}_{6} \mathrm{~S}_{10}\right]^{2-}$ chain anion which contains 24-membered $\mathrm{Sb}_{12} \mathrm{~S}_{12}$ rings that are interconnected. The structure-directing cations are located above and below this ring. Accepting $\mathrm{Sb}-\mathrm{S}$ distances up to $3.2 \AA$, a three-dimensional thioantimonate(III) network results.

Comment

The number of known thioantimonates(III) with organic cations acting as structure directors has significantly increased during the past few years. One interesting aspect of thioantimonate(III) structures is the fact that for a given $\mathrm{Sb}: \mathrm{S}$ ratio different structures with differing dimensionality are observed. One example is the $\mathrm{Sb}: \mathrm{S}$ ratio of 1:1.667 for which $\left[\mathrm{Sb}_{3} \mathrm{~S}_{5}\right]^{-}$(Parise, 1991; Volk \& Schäfer, 1979; Parise \& Ko, 1992; Gostojic et al., 1982; Engelke et al., 2002), $\left[\mathrm{Sb}_{6} \mathrm{~S}_{10}\right]^{2-}$ (Rijnberk et al., 2000; Stähler et al., 2001; Spetzler et al., 2004), $\left[\mathrm{Sb}_{9} \mathrm{~S}_{15}\right]^{3-}$ (Spetzler et al., 2004) and $\left[\mathrm{Sb}_{12} \mathrm{~S}_{20}\right]^{4-}$ (Wang et al., 1998) anions have been reported. The dimensionality of thioantimonates(III) with organic structure directors ranges from one-dimensional chains to three-dimensional networks. The trend shows that the dimensionality decreases with the size of the organic molecules but a strict relationship cannot be deduced. In our ongoing work in the field of solvothermal syntheses of thioantimonate(III) network compounds we prepared another member of the series of compounds with an $\mathrm{Sb}: \mathrm{S}$ ratio of 1:1.667 applying 1,2-diaminopropane as structure director.

(I)

The structure of the title compound, (I), is constructed by interconnection of ten unique SbS_{3} trigonal pyramids. $\mathrm{Sb} 1-$ Sb3S3 and Sb8-Sb10S3 are joined to form the well known

Received 21 February 2006
Accepted 23 February 2006

Figure 1
The structure of the title compound, with atom labeling and with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$.]
$\mathrm{Sb}_{3} \mathrm{~S}_{4}$ semicube. ${\mathrm{Sb} 5 \mathrm{~S}_{3} \text { and } \mathrm{Sb}_{3} \mathrm{~S}_{3} \text { share a common edge }}^{\text {s. }}$ yielding an $\mathrm{Sb}_{2} \mathrm{~S}_{4}$ group. The semicubes and the $\mathrm{Sb}_{2} \mathrm{~S}_{4}$ group are interconnected by $\mathrm{Sb} 4 \mathrm{~S}_{3}$ and $\mathrm{Sb} 7 \mathrm{~S}_{3}$ pyramids to form an $\mathrm{Sb}_{10} \mathrm{~S}_{16}$ unit (Fig. 1). These large units are condensed into a chain anion which is directed along [101]. A remarkable feature of the anion is a 24 -membered $\mathrm{Sb}_{12} \mathrm{~S}_{12}$ ring (Figs. 1 and 2). The $\mathrm{Sb}-\mathrm{S}$ bonds are in the range observed for other thioantimonates(III). The charge-compensating organic structure directors are located above and below the large rings (Figs. 2 and 3). Relatively short $\mathrm{N} \cdots \mathrm{S}$ separations indicate weak hydrogen-bonding interactions. The shortest interchain $\mathrm{Sb} \cdots \mathrm{S}$ distance is below $3 \AA$ and, treating such $\mathrm{Sb} \cdots \mathrm{S}$ contacts as secondary bonds, a layered anion is formed. Threedimensional interconnection is achieved by expanding bonding $\mathrm{Sb} \cdots \mathrm{S}$ separations to about $3.2 \AA$, a distance which is markedlyl shorter than the sum of the van der Waals radii ($3.8 \AA$). We note that the thioantimonate(III) network topology is closely related to that of $\left[\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{3}\right]$ [$\mathrm{Sb}_{10} \mathrm{~S}_{16}$] (Wang et al., 1998).

Experimental

$\left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Sb}_{10} \mathrm{~S}_{16}\right]$ was synthesized under solvothermal conditions from a mixture of elemental antimony (1 mmol), sulfur (3 mmol) and 10% aqueous 1,2 -diaminopropane solution in a Teflon-lined steel autoclave. The mixture was heated for 6 d at 433 K . The title compound crystallized as dark-red crystals in 40% yield based on antimony. The product was washed with water and ethanol.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Sb}_{10} \mathrm{~S}_{16}\right] \\
& M_{r}=1806.61 \\
& \text { Monoclinic, } P 2_{6} / n \\
& a=17.480(3) \AA \\
& b=10.922(2) \AA \\
& c=18.030(3) \AA \\
& \beta=111.415(10)^{\circ} \\
& V=3204.5(10) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Stoe AED-II four-circle	$R_{\text {int }}=0.025$
\quad diffractometer	$\theta_{\max }=27.0^{\circ}$
$\omega-\theta$ scans	$h=0 \rightarrow 22$
Absorption correction: numerical	$k=-13 \rightarrow 6$
$(X$-SHAPE; Stoe \& Cie, 1998)	$l=-23 \rightarrow 21$
$T_{\min }=0.345, T_{\max }=0.401$	4 standard reflections
11455 measured reflections	every 120 reflections
6992 independent reflections	intensity decay: none

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0224 P)^{2}\right.} \\
&+5.0622 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.92 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.80 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

Sb1-S1	2.4099 (12)	Sb6-S10	2.4753 (13)
Sb1-S3	2.5604 (12)	Sb6-S8	2.5113 (13)
Sb1-S2	2.5777 (12)	Sb7-S12	2.4392 (13)
Sb2-S2	2.4477 (12)	Sb7-S11	2.4727 (12)
Sb2-S4	2.5408 (12)	Sb7-S10	2.4983 (13)
Sb2-S6 ${ }^{\text {i }}$	2.5475 (12)	Sb8-S14	2.4368 (12)
Sb3-S3	2.4551 (12)	Sb8-S13	2.5353 (12)
Sb3-S5	2.5082 (12)	Sb8-S12	2.5397 (12)
Sb3-S4	2.5490 (12)	Sb9-S15	2.4669 (13)
Sb4-S6	2.4451 (13)	Sb9-S11 ${ }^{\text {i }}$	2.5288 (12)
Sb4-S7	2.5055 (13)	Sb9-S13	2.5472 (12)
Sb4-S5	2.5115 (12)	Sb10-S16	2.4070 (13)
Sb5-S8	2.4561 (13)	Sb10-S15	2.5317 (12)
Sb5-S9	2.4583 (13)	Sb10-S14	2.6014 (12)
Sb5-S7	2.5340 (13)	$\mathrm{S} 6-\mathrm{Sb} 2^{\text {ii }}$	2.5475 (12)
Sb6-S9	2.4747 (14)	S11-Sb9 ${ }^{\text {ii }}$	2.5288 (12)
S1-Sb1-S3	92.29 (4)	S9-Sb6-S10	89.95 (5)
S1-Sb1-S2	90.73 (4)	S9-Sb6-S8	87.72 (4)
S3-Sb1-S2	94.07 (4)	S10-Sb6-S8	97.01 (4)
S2-Sb2-S4	91.28 (4)	S12-Sb7-S11	94.18 (4)
S2-Sb2-S6 ${ }^{\text {i }}$	92.40 (4)	S12-Sb7-S10	94.30 (4)
S4-Sb2-S6 ${ }^{\text {i }}$	93.04 (4)	S11-Sb7-S10	89.48 (4)
S3-Sb3-S5	89.41 (4)	S14-Sb8-S13	93.03 (4)
S3-Sb3-S4	91.37 (4)	S14-Sb8-S12	95.60 (4)
S5-Sb3-S4	95.80 (4)	S13-Sb8-S12	95.68 (4)
S6-Sb4-S7	95.06 (4)	S15-Sb9-S11 ${ }^{\text {i }}$	89.67 (4)
S6-Sb4-S5	91.59 (4)	S15-Sb9-S13	90.36 (4)
S7-Sb4-S5	91.11 (4)	S11 ${ }^{\text {i }}$-Sb9-S13	95.83 (4)
S8-Sb5-S9	89.34 (4)	S16-Sb10-S15	92.12 (4)
S8-Sb5-S7	89.91 (5)	S16-Sb10-S14	90.89 (4)
S9-Sb5-S7	99.13 (4)	S15-Sb10-S14	95.24 (4)

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.

Table 2
Hydrogen-bond geometry (\AA, ${ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{~S} 7^{\text {iii }}$	0.89	2.53	$3.341(7)$	151
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{~S} 0^{\text {iii }}$	0.89	3.37	$3.905(8)$	121
N2-H2A S^{i}	0.89	2.53	$3.309(5)$	147
N2-H2B $\cdots \mathrm{S} 4$	0.89	2.52	$3.340(6)$	153
N2-H2C $\cdots \mathrm{S} 13^{\text {iii }}$	0.89	2.48	$3.343(6)$	163

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $-x+2,-y+1,-z$.

Figure 2
Part of the crystal structure of the title compound, showing the connection of the SbS rings (hydrogen bonding is shown as dashed lines).

All H atoms were positioned with idealized geometry and were refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for methyl and ammonium H atoms and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for methine and methylene H atoms using a riding model, with $\mathrm{C}, \mathrm{N}-\mathrm{H}=0.96 \AA$ for methyl, $0.89 \AA$ for ammonium, $0.98 \AA$ for methine and $0.97 \AA$ for methylene H atoms.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: CIFTAB in SHELXL97.

This work was supported by the State of SchleswigHolstein. We are very thankful to cand.chem. Bianca Schweiger.

References

Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany.

Figure 3
The crystal structure of the title compound, viewed along the b axis.

Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Engelke, L., Näther, C. \& Bensch, W. (2002). Eur. J. Inorg. Chem. pp. 29362941.

Gostojic, M., Nowacki, W. \& Engel, P. (1982). Z. Kristallogr. 159, 217-224.
Parise, J. B. (1991). Science, 251, 293-294.
Parise, J. B. \& Ko, Y. (1992). Chem. Mater. 4, 1446-1450.
Rijnberk, H., Näther, C. \& Bensch, W. (2000). Monatsh. Chem. 131, 721-726.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spetzler, V., Kiebach, R., Näther, C. \& Bensch, W. (2004). Z. Anorg. Allg. Chem. 630, 2398-2404.
Stähler, R., Näther, C. \& Bensch, W. (2001). Eur. J. Chem. pp. 1835-1840.
Stoe \& Cie (1992). DIF4 (Version 7.09X/DOS) and REDU4 (Version 7.03). Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1998). X-SHAPE. Version 1.03. Stoe \& Cie, Darmstadt, Germany.
Volk, K. \& Schäfer, H. (1979). Z. Naturforsch. Teil B, 34, 172-175.
Wang, X., Jacobson, A. J. \& Liebau, F. (1998). J. Solid State Chem. 140, 387395.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

